并非下表中的所有实体都能在所有的浏览器中正确地显示。
目前,IE 11 是唯一一个能正确显示所有 HTML5 实体的浏览器。
字符 | 实体名称 | 十六进制 |
---|---|---|
'S | Sacute | 0015A |
's | sacute | 0015B |
‘ | sbquo | 0201A |
Sc | 02ABC | |
sc | 0227B | |
scap | 02AB8 | |
S | Scaron | 00160 |
s | scaron | 00161 |
sccue | 0227D | |
scE | 02AB4 | |
sce | 02AB0 | |
S | Scedil | 0015E |
s | scedil | 0015F |
^S | Scirc | 0015C |
^s | scirc | 0015D |
scnap | 02ABA | |
scnE | 02AB6 | |
scnsim | 022E9 | |
scpolint | 02A13 | |
scsim | 0227F | |
С | Scy | 00421 |
с | scy | 00441 |
· | sdot | 022C5 |
sdotb | 022A1 | |
sdote | 02A66 | |
searhk | 02925 | |
seArr | 021D8 | |
↘ | searr | 02198 |
↘ | searrow | 02198 |
§ | sect | 000A7 |
; | semi | 0003B |
seswar | 02929 | |
\ | setminus | 02216 |
\ | setmn | 02216 |
sext | 02736 | |
? | Sfr | 1D516 |
? | sfr | 1D530 |
sfrown | 02322 | |
sharp | 0266F | |
Щ | SHCHcy | 00429 |
щ | shchcy | 00449 |
Ш | SHcy | 00428 |
ш | shcy | 00448 |
↓ | ShortDownArrow | 02193 |
← | ShortLeftArrow | 02190 |
∣ | shortmid | 02223 |
∥ | shortparallel | 02225 |
→ | ShortRightArrow | 02192 |
↑ | ShortUpArrow | 02191 |
- | shy | 000AD |
Σ | Sigma | 003A3 |
σ | sigma | 003C3 |
sigmaf | 003C2 | |
sigmav | 003C2 | |
~ | sim | 0223C |
simdot | 02A6A | |
sime | 02243 | |
simeq | 02243 | |
simg | 02A9E | |
simgE | 02AA0 | |
siml | 02A9D | |
simlE | 02A9F | |
simne | 02246 | |
simplus | 02A24 | |
simrarr | 02972 | |
← | slarr | 02190 |
SmallCircle | 02218 | |
\ | smallsetminus | 02216 |
smashp | 02A33 | |
smeparsl | 029E4 | |
∣ | smid | 02223 |
smile | 02323 | |
smt | 02AAA | |
smte | 02AAC | |
smtes | 02AAC + 0FE00 | |
Ь | SOFTcy | 0042C |
ь | softcy | 0044C |
/ | sol | 0002F |
solb | 029C4 | |
solbar | 0233F | |
? | Sopf | 1D54A |
? | sopf | 1D564 |
spades | 02660 | |
spadesuit | 02660 | |
∥ | spar | 02225 |
sqcap | 02293 | |
sqcaps | 02293 + 0FE00 | |
sqcup | 02294 | |
sqcups | 02294 + 0FE00 | |
√ | Sqrt | 0221A |
sqsub | 0228F | |
sqsube | 02291 | |
sqsubset | 0228F | |
sqsubseteq | 02291 | |
sqsup | 02290 | |
sqsupe | 02292 | |
sqsupset | 02290 | |
sqsupseteq | 02292 | |
□ | squ | 025A1 |
□ | Square | 025A1 |
□ | square | 025A1 |
SquareIntersection | 02293 | |
SquareSubset | 0228F | |
SquareSubsetEqual | 02291 | |
SquareSuperset | 02290 | |
SquareSupersetEqual | 02292 | |
SquareUnion | 02294 | |
squarf | 025AA | |
squf | 025AA | |
→ | srarr | 02192 |
? | Sscr | 1D4AE |
? | sscr | 1D4C8 |
\ | ssetmn | 02216 |
ssmile | 02323 | |
sstarf | 022C6 | |
Star | 022C6 | |
☆ | star | 02606 |
★ | starf | 02605 |
ε | straightepsilon | 003F5 |
φ | straightphi | 003D5 |
strns | 000AF | |
Sub | 022D0 | |
sub | 02282 | |
subdot | 02ABD | |
subE | 02AC5 | |
sube | 02286 | |
subedot | 02AC3 | |
submult | 02AC1 | |
subnE | 02ACB | |
subne | 0228A | |
subplus | 02ABF | |
subrarr | 02979 | |
Subset | 022D0 | |
subset | 02282 | |
subseteq | 02286 | |
subseteqq | 02AC5 | |
SubsetEqual | 02286 | |
subsetneq | 0228A | |
subsetneqq | 02ACB | |
subsim | 02AC7 | |
subsub | 02AD5 | |
subsup | 02AD3 | |
succ | 0227B | |
succapprox | 02AB8 | |
succcurlyeq | 0227D | |
Succeeds | 0227B | |
SucceedsEqual | 02AB0 | |
SucceedsSlantEqual | 0227D | |
SucceedsTilde | 0227F | |
succeq | 02AB0 | |
succnapprox | 02ABA | |
succneqq | 02AB6 | |
succnsim | 022E9 | |
succsim | 0227F | |
SuchThat | 0220B | |
∑ | Sum | 02211 |
∑ | sum | 02211 |
sung | 0266A | |
Sup | 022D1 | |
sup | 02283 | |
^1 | sup1 | 000B9 |
^2 | sup2 | 000B2 |
^3 | sup3 | 000B3 |
supdot | 02ABE | |
supdsub | 02AD8 | |
supE | 02AC6 | |
supe | 02287 | |
supedot | 02AC4 | |
Superset | 02283 | |
SupersetEqual | 02287 | |
suphsol | 027C9 | |
suphsub | 02AD7 | |
suplarr | 0297B | |
supmult | 02AC2 | |
supnE | 02ACC | |
supne | 0228B | |
supplus | 02AC0 | |
Supset | 022D1 | |
supset | 02283 | |
supseteq | 02287 | |
supseteqq | 02AC6 | |
supsetneq | 0228B | |
supsetneqq | 02ACC | |
supsim | 02AC8 | |
supsub | 02AD4 | |
supsup | 02AD6 | |
swarhk | 02926 | |
swArr | 021D9 | |
↙ | swarr | 02199 |
↙ | swarrow | 02199 |
swnwar | 0292A | |
ss | szlig | 000DF |